Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death1 mutant.

نویسندگان

  • Kirk Overmyer
  • Mikael Brosché
  • Riikka Pellinen
  • Tero Kuittinen
  • Hannele Tuominen
  • Reetta Ahlfors
  • Markku Keinänen
  • Mart Saarma
  • Dierk Scheel
  • Jaakko Kangasjärvi
چکیده

Short, high-concentration peaks of the atmospheric pollutant ozone (O(3)) cause the formation of cell death lesions on the leaves of sensitive plants. Numerous similarities between the plant responses to O(3) and pathogens suggest that O(3) triggers hypersensitive response-like programmed cell death (PCD). We examined O(3) and superoxide-induced cell death in the O(3)-sensitive radical-induced cell death1 (rcd1) mutant. Dying cells in O(3)-exposed rcd1 exhibited several of the typical morphological characteristics of the hypersensitive response and PCD. Double-mutant analyses indicated a requirement for salicylic acid and the function of the cyclic nucleotide-gated ion channel AtCNGC2 in cell death. Furthermore, a requirement for ATPases, kinases, transcription, Ca(2+) flux, caspase-like proteolytic activity, and also one or more phenylmethylsulfonyl fluoride-sensitive protease activities was shown for the development of cell death lesions in rcd1. Furthermore, mitogen-activated protein kinases showed differential activation patterns in rcd1 and Columbia. Taken together, these results directly demonstrate the induction of PCD by O(3).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ozone-sensitive arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death.

We have isolated a codominant Arabidopsis mutant, radical-induced cell death1 (rcd1), in which ozone (O(3)) and extracellular superoxide (O(2)(*)-), but not hydrogen peroxide, induce cellular O(2)(*)- accumulation and transient spreading lesions. The cellular O(2)(*)- accumulation is ethylene dependent, occurs ahead of the expanding lesions before visible symptoms appear, and is required for le...

متن کامل

Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses.

Experiments with several Arabidopsis thaliana mutants have revealed a web of interactions between hormonal signaling. Here, we show that the Arabidopsis mutant radical-induced cell death1 (rcd1), although hypersensitive to apoplastic superoxide and ozone, is more resistant to chloroplastic superoxide formation, exhibits reduced sensitivity to abscisic acid, ethylene, and methyl jasmonate, and h...

متن کامل

Arabidopsis radical-induced cell death1 is involved in UV-B signaling.

The Arabidopsis radical-induced cell death1 (rcd1) mutant is sensitive to ozone fumigation and apoplastic superoxide, but tolerant to methyl viologen. In the present article, we report that the rcd1 mutant is also tolerant to supplementary UV-B radiation. The rcd1-1 mutant exhibits less accumulation of TT dimers, increased hypocotyl growth inhibition and higher accumulation of flavonoids under ...

متن کامل

Hormonal regulation of radical-induced programmed cell death in ozone-sensitive mutants of Arabidopsis thaliana

Finland Academic dissertation To be presented for public criticism, with permission of the

متن کامل

Transcriptomics and Functional Genomics of ROS-Induced Cell Death Regulation by RADICAL-INDUCED CELL DEATH1

Plant responses to changes in environmental conditions are mediated by a network of signaling events leading to downstream responses, including changes in gene expression and activation of cell death programs. Arabidopsis thaliana RADICAL-INDUCED CELL DEATH1 (RCD1) has been proposed to regulate plant stress responses by protein-protein interactions with transcription factors. Furthermore, the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 137 3  شماره 

صفحات  -

تاریخ انتشار 2005